Structure Reports
 Online

ISSN 1600-5368

Nigel McSweeney, ${ }^{\text {a }}$ Albert C. Pratt, ${ }^{\text {a }}$ Conor Long ${ }^{\text {a }}$ and R. Alan Howie ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Chemical Sciences, Dublin City University, Dublin 9, Ireland, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: r.a.howie@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
Disorder in main residue
R factor $=0.070$
$w R$ factor $=0.198$
Data-to-parameter ratio $=17.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

$4^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}$-Tetrachlorospiro[cyclohex-2-ene-1, 2^{\prime}-indan]-1',3'-dione

The title compound, $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{O}_{2}$, has been isolated following irradiation of a dichloromethane solution of N -acetyltetrachlorophthalimide and cyclohexene. The structure refinement is slightly compromised by the disorder over two positions of equal occupancy of a methylene group β to the spiro C atom.

Comment

The photochemistry of phthalimides has been extensively investigated over the past three decades and has yielded a rich diversity of molecular transformations, which have been reviewed by Kanaoka (1978), Coyle (1984) and Oelgemöller \& Griesbeck (2002). Unsymmetrical 1,4-cycloaddition occurs across the benzo ring of N-benzoylphthalimide on irradiation in the presence of cyclohexene (McSweeney et al., 2005), and similar 1,4-photocycloaddition occurs between N-ethyl-3,4,5,6-tetrachlorophthalimide and cyclohexene (Grimley et al., 2005). The title compound, (I), and rel-(2S,7R)-8,9,11,12tetrachlorotricyclo[6.2.2.0 $0^{2,7}$]dodeca-9,11-diene-1,10-dicarboximide, (II), are products of the photochemical reaction between N-acetyl-3,4,5,6-tetrachlorophthalimide, (III), and cyclohexene in dichloromethane. Compound (II) is simply a further example of a compound resulting from 1,4-cycloaddition but (I), the structure of which is presented here, is more unusual.

(I)

(II)

Formation of (I) most likely occurs via a sequence involving photoinitiated electron transfer/allylic proton transfer from cyclohexene to N-acetyltetrachlorophthalimide followed by radical coupling, to yield the corresponding cyclohexenyl carbinol. Subsequent thermal ring opening to give the corre-

Received 17 May 2005 Accepted 18 May 2005 Online 28 May 2005
sponding acyclic imido ketone, followed by enolization and ring closure with elimination of acetamide, would yield the observed dione (I).

The molecule of (I) is shown in Fig. 1. The majority of the bond lengths and angles are as expected for a molecule of this kind, but some data relating to particular features of the molecular geometry are given in Table 1.

In the course of refinement, the methylene group β to the spiro C atom was found to be disordered over two sites of equal occupancy, C13A and C13B. It is to this disorder, and possible limitations in modelling it, that the surprising variation in the length of the bonds to $\mathrm{C} 13 A$ and $\mathrm{C} 13 B$ and the unusual $\mathrm{C} 13 B-\mathrm{C} 14-\mathrm{C} 1$ angle of $119.3(6)^{\circ}$ are attributed. Prolonged and ultimately wholly unsuccessful attempts were made to investigate an alternative model for the disorder in this part of the molecule, in which the entire cyclohexene ring was disordered over two orientations related by rotation through 180° about the vector between atoms C 1 and C 12 . The relevant torsion angles in Table 1 show that atoms C13A and C13B each lie at the apex of a triangular flap which adopts two orientations, one tilted above and one below the plane of the other atoms in the cyclohexene ring. Other torsion angles in Table 1 reveal that the five-membered ring defined by $\mathrm{C} 1-\mathrm{C} 3 /$ $\mathrm{C} 8 / \mathrm{C} 9$ is puckered, with pucker parameters (Cremer \& Pople, 1975) of $Q_{2}=0.117$ (5) \AA and $\varphi_{2}=348(2)^{\circ}$ corresponding most closely to a twist conformation with twist about the C9C1 bond.

The packing of the molecules of (I) in the unit cell (Fig. 2) brings about overlap of the rings defined by atoms C3-C8 related in pairs by crystallographic centres of symmetry (symmetry code: $1-x, 1-y, 1-z$), in which the distance between the ring centroids, the perpendicular distance between the rings and the lateral displacement or slippage of the rings are $3.983,3.624$ and $1.652 \AA$, respectively. There are no other intermolecular contacts of any significance.

Experimental

Compound (I) was one of three products of the irradiation through Pyrex for 30 h of N -acetyl-3,4,5,6-tetrachlorophthalimide, (III), $(3.08 \mathrm{~g}, \quad 9.4 \mathrm{mmol})$ and cyclohexene $(15.80 \mathrm{~g}, \quad 192.7 \mathrm{mmol})$ in dichloromethane (300 ml). The solvents were removed under vacuum and the resulting mixture separated using a Chromatotron and a 4 mm plate. The eluent was a mixture of dichloromethane and light petroleum (b.p. 313-333 K) (2:98, increased stepwise to $60: 40$). This gave, in order of recovery from the plate, firstly compound (I), a yellow crystalline solid ($15 \mathrm{mg}, 5 \%$), m.p. $401-404 \mathrm{~K}$ (from chloro-form-light petroleum b.p. $363-373 \mathrm{~K}$) [IR ($\nu_{\max }, \mathrm{cm}^{-1}$): 2938 (aliphatic CH), $1749(\mathrm{C}=\mathrm{O}), 1533(\mathrm{C}=\mathrm{C}), 1284$ and 1207; ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right.$, p.p.m.): $6.3(1 \mathrm{H}, t$ of $d, J=9.9 \mathrm{~Hz}, J=7.7 \mathrm{~Hz}), 5.3$ $(1 \mathrm{H}, d, J=9.9 \mathrm{~Hz})$ and $2.2-1.3(6 \mathrm{H}, m$, aliphatic H$) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, \delta$, p.p.m.): 197.1 (carbonyl C) 142.0, 135.6, 135.1, 131.1, 119.8 (unsaturated C), 56.7 (quaternary C), 28.7, 23.9 and 17.7 (aliphatic C)], secondly a mixture of a minor product and (III) as a brown oil (25 mg), thirdly unreacted (III) $(2.80 \mathrm{~g}, 8.6 \mathrm{mmol})$, identified by comparison of its IR spectrum with that of an authentic sample, and finally the 1,4-adduct, rel-($2 S, 7 R$)-8,9,11,12-tetrachlorotricyclo[6.2.2.0 ${ }^{2,7}$]dodeca-9,11-diene-1,10-dicarboximide, (II), ($46 \mathrm{mg}, 15 \%$).

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small circles of arbitrary radii. The only component of the disorder noted elsewhere which is shown here is that which is compatible with $\mathrm{C} 13 A$.

Figure 2
The unit-cell contents of (I). Displacement ellipsoids are drawn at the 10% probability level and H atoms have been omitted for clarity. Selected atoms are labelled. Atom $\mathrm{C} 13 A$ is the only representative of the disorder noted elsewhere which is shown here. [Symmetry codes (i) $1-x, 1-y, 1$ $-z$; (ii) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (iii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$.]

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{O}_{2}$	$D_{x}=1.662 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=350.00$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / c$	Cell parameters from 14
$a=10.707(6) \AA$	reflections
$b=12.103(8) \AA$	$\theta=7.7-10.6^{\circ}$
$c=10.800(6) \AA$	$\mu=0.84 \mathrm{~mm}^{-1}$
$\beta=91.25(5)^{\circ}$	$T=298(2) \mathrm{K}$
$V=1399.2(14) \AA^{\circ}$	Block, yellow
$Z=4$	$0.60 \times 0.60 \times 0.20 \mathrm{~mm}$

[^0]
Data collection

Nicolet $P 3$ four-circle	1634 reflections with $I>2 \sigma(I)$
diffractometer	$\theta_{\max }=27.6^{\circ}$
$\omega / 2 \theta$ scans	$h=0 \rightarrow 13$
Absorption correction: ψ scan	$k=0 \rightarrow 15$
(North et al., 1968)	$l=-14 \rightarrow 14$
$T_{\text {min }}=0.565, T_{\max }=0.845$	2 standard reflections
3222 measured reflections	every 50 reflections
3222 independent reflections	intensity decay: none

Refinement

Refinement on F^{2}	H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.070$	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.102 P)^{2}\right]$
$w R\left(F^{2}\right)=0.198$	where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$S=0.99$	$(\Delta / \sigma)_{\max }<0.001$
3222 reflections	$\Delta \rho_{\max }=0.35$ e \AA^{-3}
190 parameters	$\Delta \rho_{\min }=-0.31 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 10$	$1.521(6)$	$\mathrm{C} 12-\mathrm{C} 13 A$	$1.519(8)$
$\mathrm{C} 1-\mathrm{C} 9$	$1.524(6)$	$\mathrm{C} 12-\mathrm{C} 13 B$	$1.495(8)$
$\mathrm{C} 1-\mathrm{C} 14$	$1.525(6)$	$\mathrm{C} 13 A-\mathrm{C} 14$	$1.441(8)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.525(6)$	$\mathrm{C} 13 B-\mathrm{C} 14$	$1.449(8)$
$\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 9$	$112.0(4)$	$\mathrm{C} 14-\mathrm{C} 1-\mathrm{C} 2$	$108.4(4)$
$\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 14$	$112.4(4)$	$\mathrm{C} 14-\mathrm{C} 13 A-\mathrm{C} 12$	$114.8(7)$
$\mathrm{C} 9-\mathrm{C} 1-\mathrm{C} 14$	$108.0(4)$	$\mathrm{C} 14-\mathrm{C} 13 B-\mathrm{C} 12$	$115.8(7)$
$\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 2$	$112.7(4)$	$\mathrm{C} 13 A-\mathrm{C} 14-\mathrm{C} 1$	$115.1(6)$
$\mathrm{C} 9-\mathrm{C} 1-\mathrm{C} 2$	$102.8(3)$	$\mathrm{C} 13 B-\mathrm{C} 14-\mathrm{C} 1$	$119.3(6)$
C $9-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-10.3(4)$	$\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$-2.4(9)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	$5.1(4)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13 A$	$-16.1(9)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 9$	$2.8(5)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13 B$	$25.4(9)$
$\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 1$	$-9.6(5)$	$\mathrm{C} 13 A-\mathrm{C} 14-\mathrm{C} 1-\mathrm{C} 10$	$31.2(8)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 1-\mathrm{C} 2$	$11.9(4)$	$\mathrm{C} 13 B-\mathrm{C} 14-\mathrm{C} 1-\mathrm{C} 10$	$-14.3(9)$
$\mathrm{C} 14-\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 11$	$-4.3(7)$		

The atom of the cyclohexene ring β to the spiro atom, C 1 , is disordered over two sites of equal occupancy, $\mathrm{C} 13 A$ and $\mathrm{C} 13 B$, which results in corresponding disorder and partial occupancy for the H atoms on these C atoms and also on the neighbouring atoms, C 12 and C14. During refinement, bond distances involving C13A and C13B were restrained to $1.50(1) \AA . \mathrm{H}$ atoms were placed in calculated positions, taking full account of the disorder noted above, with $\mathrm{C}-\mathrm{H}$ set to 0.93 and $0.97 \AA$ for alkene and methylene H atoms, respectively, and refined with a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ in all cases.

Data collection: Nicolet P3 Software (Nicolet, 1980); cell refinement: Nicolet P3 Software; data reduction: RDNIC (Howie, 1980); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

NM thanks Dublin City University for a studentship.

References

Coyle, J. D. (1984). Synthetic Organic Photochemistry, edited by W. M. Horspool, pp. 259-284. New York: Plenum Press.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Grimley, F. M., O’Donnell, C., Pratt, A. C., Long, C. \& Howie R. A. (2005). Acta Cryst. C61, o369-o372.
Howie, R. A. (1980). RDNIC. University of Aberdeen, Scotland.
Kanaoka, Y. (1978). Acc. Chem. Res. 11, 407-413.
McSweeney, N., Pratt, A. C., Long, C. \& Howie, R. A. (2005). Acta Cryst. E61, o547-o549.
Nicolet (1980). Nicolet P3/R3 Data Collection Operator's Manual. Nicolet XRD Corporation, Cupertino, California, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Oelgemöller, M. \& Griesbeck, A. G. (2002). J. Photochem. Photobiol. C, 3, 109-127.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: $D_{x}=1.662 \mathrm{Mg} \mathrm{m}^{-3}$
 Mo $K \alpha$ radiation
 Cell parameters from 14 reflections
 $\theta=7.7-10.6^{\circ}$
 $\mu=0.84 \mathrm{~mm}^{-1}$
 Block, yellow
 $0.60 \times 0.60 \times 0.20 \mathrm{~mm}$

